TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 6: SVD

Recap

- Any finite-dimensional inner product space has orthonormal basis. Fourier coefficients, Parseval's identity. Adjoint of linear transform. Reisz representation theorem. Self-adjoint linear operators: eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.
- Real Spectral Theorem: every self-adjoint operator φ: V → V for finitedimensional V has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").
- Raleigh quotients: $R_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ where $\hat{v} = v/||v||$
- The vector v such that applying φ gives the largest "stretch" in v direction is the eigenvector of largest eigenvalue, and likewise for the evector of smallest evalue. (Extension: Courant-Fischer Theorem)
- Positive semidefiniteness (see next slide).

Positive Semidefiniteness (recap)

Definition 3.4 Let $\varphi : V \to V$ be a self-adjoint operator. φ is said to be positive semidefinite if $\mathcal{R}_{\varphi}(v) \ge 0$ for all $v \ne 0$. φ is said to be positive definite if $\mathcal{R}_{\varphi}(v) > 0$ for all $v \ne 0$.

Proposition 3.5 *Let* $\varphi : V \to V$ *be a self-adjoint linear operator. Then the following are equivalent:*

- 1. $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0$.
- 2. All eigenvalues of φ are non-negative.

Part of argument: if $\varphi = \alpha^* \alpha$ then $\langle v, \varphi(v) \rangle = \langle v, \alpha^*(\alpha(v)) \rangle = \langle \alpha(v), \alpha(v) \rangle \ge 0$. This also means that if v is an eigenvector, its eigenvalue must be non-negative.

3. There exists $\alpha : V \to V$ such that $\varphi = \alpha^* \alpha$.

The decomposition of a positive semidefinite operator in the form $\varphi = \alpha^* \alpha$ is known as the Cholesky decomposition of the operator. Note that if we can write φ as $\alpha^* \alpha$ for any $\alpha : V \to W$, then this in fact also shows that φ is self-adjoint and positive semidefinite.

The Real Spectral Theorem

Assume *V* is finite-dimensional

Theorem: every **self-adjoint operator** $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

- E.g., square symmetric matrices over \mathbb{R}^n .
- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors w_1, \ldots, w_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. Then:

For
$$v = \sum_{i} c_{i} w_{i}$$
, we have $\varphi(v) = \sum_{i} \lambda_{i} c_{i} w_{i}$.

I.e., just stretching or shrinking in each "coordinate".

• Consider a linear transformation $\varphi: V \to W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^* \varphi: V \to V$ and $\varphi \varphi^*: W \to W$, and then use these to get a nice decomposition of φ called **Singular Value Decomposition (SVD)**.

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Self-adjointness of $\varphi \varphi^*$ (the proof for $\varphi^* \varphi$ is analogous):

• $\langle w_1, \varphi(\varphi^*(w_2)) \rangle = \langle \varphi^*(w_1), \varphi^*(w_2) \rangle = \langle \varphi(\varphi^*(w_1)), w_2 \rangle.$

Positive semidefiniteness of $\varphi \varphi^*$ (the proof for $\varphi^* \varphi$ is analogous):

• $\langle w, \varphi(\varphi^*(w)) \rangle = \langle \varphi^*(w), \varphi^*(w) \rangle \ge 0.$

• Consider a linear transformation $\varphi: V \to W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^* \varphi: V \to V$ and $\varphi \varphi^*: W \to W$, and then use these to get a nice decomposition of φ called **Singular Value Decomposition (SVD).**

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Now just need to show they have the same nonzero eigenvalues:

• Let $\lambda > 0$ be an eigenvalue of $\varphi^* \varphi$ with eigenvector v. So $\varphi^* (\varphi(v)) = \lambda v$.

• This implies $\varphi(\varphi^*(\varphi(v))) = \lambda \varphi(v)$. Note that $\varphi(v)$ can't be 0 (by \uparrow), so $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ of eigenvalue λ .

• Consider a linear transformation $\varphi: V \to W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^* \varphi: V \to V$ and $\varphi \varphi^*: W \to W$, and then use these to get a nice decomposition of φ called **Singular Value Decomposition (SVD).**

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

• This implies $\varphi(\varphi^*(\varphi(v))) = \lambda \varphi(v)$. Note that $\varphi(v)$ can't be 0 (by \uparrow), so $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ of eigenvalue λ .

Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ . Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ .

Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ . Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ .

Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

 $V_{\lambda} := \{ v \in V \mid \varphi^* \varphi(v) = \lambda \cdot v \} \text{ and } W_{\lambda} := \{ w \in W \mid \varphi \varphi^*(w) = \lambda \cdot w \}.$

Then for any $\lambda \neq 0$ *,* dim $(V_{\lambda}) = \dim(W_{\lambda})$ *.*

Proof:

• If dim $(V_{\lambda}) = k$ then we have k orthogonal eigenvectors $v_1, ..., v_k$ of $\varphi^* \varphi$ with eigenvalue λ . So, $\varphi(v_1), ... \varphi(v_k)$ are eigenvectors of $\varphi \varphi^*$ with eigenvalue λ . In fact, they're also orthogonal: $\langle \varphi(v_i), \varphi(v_j) \rangle = \langle \varphi^* \varphi(v_i), v_j \rangle = \langle \lambda v_i, v_j \rangle = 0$. So, dim $(W_{\lambda}) \ge k$. And vice versa.

Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ . Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ .

Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

$$V_{\lambda} := \{ v \in V \mid \varphi^* \varphi(v) = \lambda \cdot v \}$$
 and $W_{\lambda} := \{ w \in W \mid \varphi \varphi^*(w) = \lambda \cdot w \}$.

Then for any $\lambda \neq 0$ *,* dim $(V_{\lambda}) = \dim(W_{\lambda})$ *.*

Using this, we now get...

Proposition 1.4 Let $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

- 1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
- 2. For all $i \in [r]$ $\varphi(v_i) = \sigma_i \cdot w_i$ and $\varphi^*(w_i) = \sigma_i \cdot v_i$.

So, even though φ and φ^* don't have eigenvectors (their domain and range are different – they are arbitrary linear transformations / matrices), the v_i and w_i are a bit like eigenvectors. They are called the (right and left) *singular vectors*, and the σ_i are called *singular values*.

Proposition 1.4 Let $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^*\varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^*\varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

- 1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
- 2. For all $i \in [r]$ $\varphi(v_i) = \sigma_i \cdot w_i$ and $\varphi^*(w_i) = \sigma_i \cdot v_i$.

Proof of (1):

• We already saw orthogonal. Unit length because $\langle \varphi(v_i), \varphi(v_i) \rangle = \langle \varphi^* \varphi(v_i), v_i \rangle = \sigma_i^2$.

Proposition 1.4 Let $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^*\varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^*\varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

- 1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
- 2. For all $i \in [r]$ $\varphi(v_i) = \sigma_i \cdot w_i$ and $\varphi^*(w_i) = \sigma_i \cdot v_i$.

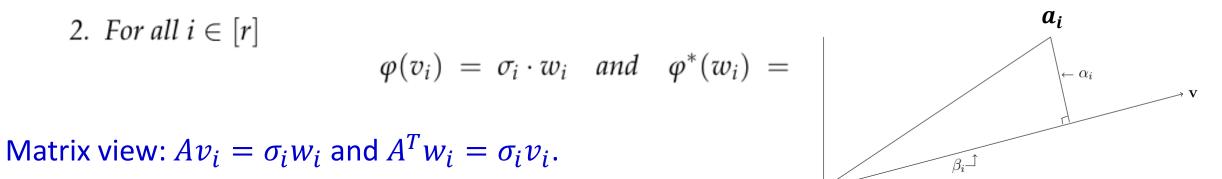
Proof of (2):

• $\varphi(v_i) = \sigma_i w_i$ by definition.

• $\varphi^*(w_i) = \varphi^*(\varphi(v_i)/\sigma_i) = \sigma_i^2 v_i/\sigma_i = \sigma_i v_i.$

Proposition 1.4 Let $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenvectors (since $\varphi^* \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.



- If you view the rows of A as representing m points in n-dimensional space, then span(v₁, ..., v_k) will be the "best-fitting" k-dimensional subspace in the sense of minimizing the sum of squared distances to the subspace.
 - Minimizing squared distance is equivalent to maximizing squared projection
 - Av is the squared projection of points in A along v

Definition 1.6 Let *V*, *W* be inner product spaces and let $v \in V$, $w \in W$ be any two vectors. The outer product of *w* with *v*, denoted as $|w\rangle \langle v|$, is a linear transformation from *V* to *W* such that

$$|w\rangle \langle v|(u) := \langle v, u \rangle \cdot w.$$

Matrix view: This is the rank-1 matrix wv^T (as opposed to the inner product w^Tv). • Get $wv^Tu = w(v^Tu)$.

Why is wv^T rank 1?

• Because all rows are multiples of v^T (and all columns are multiples of w).

We now get...

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation with non-zero singular values $\sigma_1, \ldots, \sigma_r$, right singular vectors v_1, \ldots, v_r and left singular vectors w_1, \ldots, w_r . Then,

$$\varphi = \sum_{i=1}^{r} \sigma_i \cdot |w_i\rangle \langle v_i| . \qquad A = \sum_{i=1}^{r} \sigma_i w_i v_i^T$$

This is the Singular Value Decomposition of φ (or A).

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation with non-zero singular values $\sigma_1, \ldots, \sigma_r$, right singular vectors v_1, \ldots, v_r and left singular vectors w_1, \ldots, w_r . Then,

$$\varphi = \sum_{i=1}^{r} \sigma_i \cdot |w_i\rangle \langle v_i| . \qquad A = \sum_{i=1}^{r} \sigma_i w_i v_i^T$$

Proof:

- First, note that the RHS is a linear transformation, so we just need to show it acts correctly on basis vectors.
- Let's define a basis: take v_1, \dots, v_r and extend arbitrarily to orthonormal basis.
- What is RHS applied to v_j ? Ans: $\sigma_j w_j = \varphi(v_j)$.
- All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to 0.

$$\begin{array}{lll} & \rho \colon V \to W & \rho^* \rho \colon V \to V & \rho \rho^* \colon W \to W \\ & \text{Positive Semidefinite with same Non-zero Eigenvalues} \\ & v_1, & \cdots, v_r, & v_{r+1}, \cdots, v_n \\ & \sigma_1^2 \ge \cdots \ge \sigma_r^2 \ge 0, & \cdots, 0 \end{array} \\ & \text{Eigenvectors and Eigenvalues of } \rho^* \rho \\ & \text{For } w_1, \cdots, w_r \text{ defined as } w_i \coloneqq \frac{\rho(v_i)}{\sigma_i} \\ & \bullet \rho(v_i) = \sigma_i \cdot w_i, \rho^*(w_i) = \sigma_i \cdot v_i & \sigma_i \text{s are singular values} \\ & \bullet v_1, \cdots, v_r \text{ are orthonormal} & \text{Right singular vectors} \\ & \bullet w_1, \cdots, w_r \text{ are orthonormal} & \text{Left singular vectors} \\ & \rho = \sum_{i=1}^r \sigma_i \cdot |w_i\rangle \langle v_i| \end{array}$$