TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 6: SVD

Recap

- Any finite-dimensional inner product space has orthonormal basis. Fourier coefficients, Parseval's identity. Adjoint of linear transform. Reisz representation theorem. Self-adjoint linear operators: eigenvalues are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.
- Real Spectral Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ for finitedimensional V has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").
- Raleigh quotients: $R_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$ where $\hat{v}=v /\|v\|$
- The vector v such that applying φ gives the largest "stretch" in \hat{v} direction is the eigenvector of largest eigenvalue, and likewise for the evector of smallest evalue. (Extension: Courant-Fischer Theorem)
- Positive semidefiniteness (see next slide).

Positive Semidefiniteness (recap)

Definition 3.4 Let $\varphi: V \rightarrow V$ be a self-adjoint operator. φ is said to be positive semidefinite if $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0 . \varphi$ is said to be positive definite if $\mathcal{R}_{\varphi}(v)>0$ for all $v \neq 0$.

Proposition 3.5 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator. Then the following are equivalent:

1. $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0$.
2. All eigenvalues of φ are non-negative.

Part of argument: if $\varphi=\alpha^{*} \alpha$ then $\langle v, \varphi(v)\rangle=$ $\left\langle v, \alpha^{*}(\alpha(v))\right\rangle=\langle\alpha(v), \alpha(v)\rangle \geq 0$. This also means that if v is an eigenvector, its eigenvalue must be non-negative.
3. There exists $\alpha: V \rightarrow V$ such that $\varphi=\alpha^{*} \alpha$.

The decomposition of a positive semidefinite operator in the form $\varphi=\alpha^{*} \alpha$ is known as the Cholesky decomposition of the operator. Note that if we can write φ as $\alpha^{*} \alpha$ for any $\alpha: V \rightarrow W$, then this in fact also shows that φ is self-adjoint and positive semidefinite.

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

- E.g., square symmetric matrices over \mathbb{R}^{n}.
- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors w_{1}, \ldots, w_{n} with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then:

For $v=\sum_{i} c_{i} w_{i}$, we have $\varphi(v)=\sum_{i} \lambda_{i} c_{i} w_{i}$.
I.e., just stretching or shrinking in each "coordinate".

Singular Value Decomposition preliminaries

- Consider a linear transformation $\varphi: V \rightarrow W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}: W \rightarrow W$, and then use these to get a nice decomposition of φ called Singular Value Decomposition (SVD).

Proposition 1.1 Let $\varphi: V \rightarrow W$ be a linear transformation. Then $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}$: $W \rightarrow W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Self-adjointness of $\varphi \varphi^{*}$ (the proof for $\varphi^{*} \varphi$ is analogous):

- $\left\langle w_{1}, \varphi\left(\varphi^{*}\left(w_{2}\right)\right)\right\rangle=\left\langle\varphi^{*}\left(w_{1}\right), \varphi^{*}\left(w_{2}\right)\right\rangle=\left\langle\varphi\left(\varphi^{*}\left(w_{1}\right)\right), w_{2}\right\rangle$.

Positive semidefiniteness of $\varphi \varphi^{*}$ (the proof for $\varphi^{*} \varphi$ is analogous):

- $\left\langle w, \varphi\left(\varphi^{*}(w)\right)\right\rangle=\left\langle\varphi^{*}(w), \varphi^{*}(w)\right\rangle \geq 0$.

Singular Value Decomposition preliminaries

- Consider a linear transformation $\varphi: V \rightarrow W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}: W \rightarrow W$, and then use these to get a nice decomposition of φ called Singular Value Decomposition (SVD).

Proposition 1.1 Let $\varphi: V \rightarrow W$ be a linear transformation. Then $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}$: $W \rightarrow W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

Now just need to show they have the same nonzero eigenvalues:

- Let $\lambda>0$ be an eigenvalue of $\varphi^{*} \varphi$ with eigenvector v. So $\varphi^{*}(\varphi(v))=\lambda v$.
- This implies $\varphi\left(\varphi^{*}(\varphi(v))\right)=\lambda \varphi(v)$. Note that $\varphi(v)$ can't be 0 (by \uparrow), so $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ of eigenvalue λ.

Singular Value Decomposition preliminaries

- Consider a linear transformation $\varphi: V \rightarrow W$. We can use our previous discussion to analyze the eigenvectors of $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}: W \rightarrow W$, and then use these to get a nice decomposition of φ called Singular Value Decomposition (SVD).

Proposition 1.1 Let $\varphi: V \rightarrow W$ be a linear transformation. Then $\varphi^{*} \varphi: V \rightarrow V$ and $\varphi \varphi^{*}$: $W \rightarrow W$ are self-adjoint positive semidefinite linear operators with the same non-zero eigenvalues.

- This implies $\varphi\left(\varphi^{*}(\varphi(v))\right)=\lambda \varphi(v)$. Note that $\varphi(v)$ can't be 0 (by \uparrow), so $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ of eigenvalue λ.

Proposition 1.2 Let v be an eigenvector of $\varphi^{*} \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue $\lambda \neq 0$, then $\varphi^{*}(w)$ is an eigenvector of $\varphi^{*} \varphi$ with eigenvalue λ.

Singular Value Decomposition preliminaries

Proposition 1.2 Let v be an eigenvector of $\varphi^{*} \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue $\lambda \neq 0$, then $\varphi^{*}(w)$ is an eigenvector of $\varphi^{*} \varphi$ with eigenvalue λ.

Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

$$
V_{\lambda}:=\left\{v \in V \mid \varphi^{*} \varphi(v)=\lambda \cdot v\right\} \text { and } W_{\lambda}:=\left\{w \in W \mid \varphi \varphi^{*}(w)=\lambda \cdot w\right\} .
$$

Then for any $\lambda \neq 0, \operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(W_{\lambda}\right)$.

Proof:

- If $\operatorname{dim}\left(V_{\lambda}\right)=k$ then we have k orthogonal eigenvectors v_{1}, \ldots, v_{k} of $\varphi^{*} \varphi$ with eigenvalue λ. So, $\varphi\left(v_{1}\right), \ldots \varphi\left(v_{k}\right)$ are eigenvectors of $\varphi \varphi^{*}$ with eigenvalue λ. In fact, they're also orthogonal: $\left\langle\varphi\left(v_{i}\right), \varphi\left(v_{j}\right)\right\rangle=\left\langle\varphi^{*} \varphi\left(v_{i}\right), v_{j}\right\rangle=\left\langle\lambda v_{i}, v_{j}\right\rangle=0$. So, $\operatorname{dim}\left(W_{\lambda}\right) \geq k$. And vice versa.

Singular Value Decomposition preliminaries

Proposition 1.2 Let v be an eigenvector of $\varphi^{*} \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^{*}$ with eigenvalue $\lambda \neq 0$, then $\varphi^{*}(w)$ is an eigenvector of $\varphi^{*} \varphi$ with eigenvalue λ.

Proposition 1.3 Let the subspaces V_{λ} and W_{λ} be defined as

$$
V_{\lambda}:=\left\{v \in V \mid \varphi^{*} \varphi(v)=\lambda \cdot v\right\} \text { and } W_{\lambda}:=\left\{w \in W \mid \varphi \varphi^{*}(w)=\lambda \cdot w\right\} .
$$

Then for any $\lambda \neq 0, \operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(W_{\lambda}\right)$.

Using this, we now get...

Singular Value Decomposition

Proposition 1.4 Let $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be the non-zero eigenvalues of $\varphi^{*} \varphi$, and let v_{1}, \ldots, v_{r} be a corresponding orthonormal eigenvectors (since $\varphi^{*} \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_{1}, \ldots, w_{r} defined as $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$, we have that

1. $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set.
2. For all $i \in[r]$

$$
\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i} \quad \text { and } \quad \varphi^{*}\left(w_{i}\right)=\sigma_{i} \cdot v_{i} .
$$

So, even though φ and φ^{*} don't have eigenvectors (their domain and range are different - they are arbitrary linear transformations / matrices), the v_{i} and w_{i} are a bit like eigenvectors. They are called the (right and left) singular vectors, and the σ_{i} are called singular values.

Singular Value Decomposition

Proposition 1.4 Let $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be the non-zero eigenvalues of $\varphi^{*} \varphi$, and let v_{1}, \ldots, v_{r} be a corresponding orthonormal eigenvectors (since $\varphi^{*} \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_{1}, \ldots, w_{r} defined as $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$, we have that

1. $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set.
2. For all $i \in[r]$

$$
\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i} \quad \text { and } \quad \varphi^{*}\left(w_{i}\right)=\sigma_{i} \cdot v_{i}
$$

Proof of (1):

- We already saw orthogonal. Unit length because $\left\langle\varphi\left(v_{i}\right), \varphi\left(v_{i}\right)\right\rangle=\left\langle\varphi^{*} \varphi\left(v_{i}\right), v_{i}\right\rangle=\sigma_{i}^{2}$.

Singular Value Decomposition

Proposition 1.4 Let $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be the non-zero eigenvalues of $\varphi^{*} \varphi$, and let v_{1}, \ldots, v_{r} be a corresponding orthonormal eigenvectors (since $\varphi^{*} \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_{1}, \ldots, w_{r} defined as $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$, we have that

1. $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set.
2. For all $i \in[r]$

$$
\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i} \quad \text { and } \quad \varphi^{*}\left(w_{i}\right)=\sigma_{i} \cdot v_{i}
$$

Proof of (2):

- $\varphi\left(v_{i}\right)=\sigma_{i} w_{i}$ by definition.
- $\varphi^{*}\left(w_{i}\right)=\varphi^{*}\left(\varphi\left(v_{i}\right) / \sigma_{i}\right)=\sigma_{i}^{2} v_{i} / \sigma_{i}=\sigma_{i} v_{i}$.

Singular Value Decomposition

Proposition 1.4 Let $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}>0$ be the non-zero eigenvalues of $\varphi^{*} \varphi$, and let v_{1}, \ldots, v_{r} be a corresponding orthonormal eigenvectors (since $\varphi^{*} \varphi$ is self-adjoint, these are a subset of some orthonormal eigenbasis). For w_{1}, \ldots, w_{r} defined as $w_{i}=\varphi\left(v_{i}\right) / \sigma_{i}$, we have that

1. $\left\{w_{1}, \ldots, w_{r}\right\}$ form an orthonormal set.
2. For all $i \in[r]$

$$
\varphi\left(v_{i}\right)=\sigma_{i} \cdot w_{i} \quad \text { and } \quad \varphi^{*}\left(w_{i}\right)=
$$

Matrix view: $A v_{i}=\sigma_{i} w_{i}$ and $A^{T} w_{i}=\sigma_{i} v_{i}$.

- If you view the rows of A as representing m points in n-dimensional space, then $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ will be the "best-fitting" k-dimensional subspace in the sense of minimizing the sum of squared distances to the subspace.
- Minimizing squared distance is equivalent to maximizing squared projection
- $A v$ is the squared projection of points in A along v

Singular Value Decomposition

Definition 1.6 Let V, W be inner product spaces and let $v \in V, w \in W$ be any two vectors. The outer product of w with v, denoted as $|w\rangle\langle v|$, is a linear transformation from V to W such that

$$
|w\rangle\langle v|(u):=\langle v, u\rangle \cdot w .
$$

Matrix view: This is the rank-1 matrix $w v^{T}$ (as opposed to the inner product $w^{T} v$).

- Get $w v^{T} u=w\left(v^{T} u\right)$.

Why is $w v^{T}$ rank 1 ?

- Because all rows are multiples of v^{T} (and all columns are multiples of w).

We now get...

Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi: V \rightarrow W$ be a linear transformation with non-zero singular values $\sigma_{1}, \ldots, \sigma_{r}$, right singular vectors v_{1}, \ldots, v_{r} and left singular vectors w_{1}, \ldots, w_{r}. Then,

$$
\varphi=\sum_{i=1}^{r} \sigma_{i} \cdot\left|w_{i}\right\rangle\left\langle v_{i}\right| . \quad A=\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{T}
$$

This is the Singular Value Decomposition of φ (or A).

Singular Value Decomposition

Proposition 1.8 Let V, W be finite dimensional inner product spaces and let $\varphi: V \rightarrow W$ be a linear transformation with non-zero singular values $\sigma_{1}, \ldots, \sigma_{r}$, right singular vectors v_{1}, \ldots, v_{r} and left singular vectors w_{1}, \ldots, w_{r}. Then,

$$
\varphi=\sum_{i=1}^{r} \sigma_{i} \cdot\left|w_{i}\right\rangle\left\langle v_{i}\right| . \quad A=\sum_{i=1}^{r} \sigma_{i} w_{i} v_{i}^{T}
$$

Proof:

- First, note that the RHS is a linear transformation, so we just need to show it acts correctly on basis vectors.
- Let's define a basis: take v_{1}, \ldots, v_{r} and extend arbitrarily to orthonormal basis.
- What is RHS applied to v_{j} ? Ans: $\sigma_{j} w_{j}=\varphi\left(v_{j}\right)$.
- All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to 0 .

Singular Value Decomposition

- $\rho: V \rightarrow W$

$$
\rho^{*} \rho: V \rightarrow V
$$

$$
\rho \rho^{*}: W \rightarrow W
$$

Positive Semidefinite with same Non-zero Eigenvalues

- $v_{1}, \quad \cdots, v_{r}, v_{r+1}, \cdots, v_{n}$ $\sigma_{1}^{2} \geq \cdots \geq \sigma_{r}^{2} \geq 0, \quad \cdots, 0$

Eigenvectors and Eigenvalues of $\rho^{*} \rho$

- For w_{1}, \cdots, w_{r} defined as $w_{i}:=\frac{\rho\left(v_{i}\right)}{\sigma_{i}}$
- $\rho\left(v_{i}\right)=\sigma_{i} \cdot w_{i}, \rho^{*}\left(w_{i}\right)=\sigma_{i} \cdot v_{i} \quad \sigma_{i} \mathrm{~s}$ are singular values
- v_{1}, \cdots, v_{r} are orthonormal Right singular vectors Left singular vectors

$$
\rho=\sum_{i=1}^{r} \sigma_{i} \cdot\left|w_{i}\right\rangle\left\langle v_{i}\right|
$$

