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Recap
• Any finite-dimensional inner product space has orthonormal basis.  Fourier 

coefficients, Parseval’s identity.  Adjoint of linear transform.  Reisz 
representation theorem. Self-adjoint linear operators: eigenvalues are real and 
eigenvectors corresponding to distinct eigenvalues are orthogonal.

• Real Spectral Theorem: every self-adjoint operator 𝜑𝜑:𝑉𝑉 → 𝑉𝑉 for finite-
dimensional 𝑉𝑉 has an orthonormal basis of eigenvectors (i.e., is “orthogonally 
diagonalizable”). 

• Raleigh quotients: 𝑅𝑅𝜑𝜑 𝑣𝑣 = �𝑣𝑣,𝜑𝜑 �𝑣𝑣 where �𝑣𝑣 = 𝑣𝑣/ 𝑣𝑣

• The vector 𝑣𝑣 such that applying 𝜑𝜑 gives the largest “stretch” in �𝑣𝑣 direction is the 
eigenvector of largest eigenvalue, and likewise for the evector of smallest evalue. 
(Extension: Courant-Fischer Theorem)

• Positive semidefiniteness (see next slide).



Positive Semidefiniteness (recap)

Part of argument: if 𝜑𝜑 = 𝛼𝛼∗𝛼𝛼 then 𝑣𝑣,𝜑𝜑 𝑣𝑣 =
𝑣𝑣,𝛼𝛼∗ 𝛼𝛼 𝑣𝑣 = 𝛼𝛼 𝑣𝑣 ,𝛼𝛼 𝑣𝑣 ≥ 0.  This also 

means that if 𝑣𝑣 is an eigenvector, its eigenvalue 
must be non-negative.



The Real Spectral Theorem
Theorem: every self-adjoint operator 𝜑𝜑:𝑉𝑉 → 𝑉𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

• E.g., square symmetric matrices over ℝ𝑛𝑛.

• Gives a nice way to view action of such operators.  Say 𝜑𝜑 has orthonormal 
eigenvectors 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 with associated eigenvalues 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛.  Then:

For 𝑣𝑣 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖𝑤𝑤𝑖𝑖, we have 𝜑𝜑 𝑣𝑣 = ∑𝑖𝑖 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝑤𝑤𝑖𝑖.

I.e., just stretching or shrinking in each “coordinate”.

Assume 𝑉𝑉 is finite-dimensional



Singular Value Decomposition preliminaries
• Consider a linear transformation 𝜑𝜑:𝑉𝑉 → 𝑊𝑊.   We can use our previous discussion 

to analyze the eigenvectors of 𝜑𝜑∗𝜑𝜑: V → 𝑉𝑉 and 𝜑𝜑𝜑𝜑∗:𝑊𝑊 → 𝑊𝑊, and then use these 
to get a nice decomposition of 𝜑𝜑 called Singular Value Decomposition (SVD).

Self-adjointness of 𝜑𝜑𝜑𝜑∗ (the proof for 𝜑𝜑∗𝜑𝜑 is analogous):

• 𝑤𝑤1,𝜑𝜑 𝜑𝜑∗ 𝑤𝑤2 = 𝜑𝜑∗ 𝑤𝑤1 ,𝜑𝜑∗ 𝑤𝑤2 = ⟨𝜑𝜑 𝜑𝜑∗ 𝑤𝑤1 ,𝑤𝑤2⟩.

Positive semidefiniteness of 𝜑𝜑𝜑𝜑∗ (the proof for 𝜑𝜑∗𝜑𝜑 is analogous):

• 𝑤𝑤,𝜑𝜑 𝜑𝜑∗ 𝑤𝑤 = 𝜑𝜑∗ 𝑤𝑤 ,𝜑𝜑∗ 𝑤𝑤 ≥ 0. 



Singular Value Decomposition preliminaries
• Consider a linear transformation 𝜑𝜑:𝑉𝑉 → 𝑊𝑊.   We can use our previous discussion 

to analyze the eigenvectors of 𝜑𝜑∗𝜑𝜑: V → 𝑉𝑉 and 𝜑𝜑𝜑𝜑∗:𝑊𝑊 → 𝑊𝑊, and then use these 
to get a nice decomposition of 𝜑𝜑 called Singular Value Decomposition (SVD).

Now just need to show they have the same nonzero eigenvalues:

• Let 𝜆𝜆 > 0 be an eigenvalue of 𝜑𝜑∗𝜑𝜑 with eigenvector 𝑣𝑣.  So 𝜑𝜑∗ 𝜑𝜑 𝑣𝑣 = 𝜆𝜆𝑣𝑣.

• This implies 𝜑𝜑 𝜑𝜑∗ 𝜑𝜑 𝑣𝑣 = 𝜆𝜆𝜑𝜑 𝑣𝑣 . Note that 𝜑𝜑 𝑣𝑣 can’t be 0 (by ↑), so 𝜑𝜑 𝑣𝑣 is an 
eigenvector of 𝜑𝜑𝜑𝜑∗ of eigenvalue 𝜆𝜆.  



Singular Value Decomposition preliminaries
• Consider a linear transformation 𝜑𝜑:𝑉𝑉 → 𝑊𝑊.   We can use our previous discussion 

to analyze the eigenvectors of 𝜑𝜑∗𝜑𝜑: V → 𝑉𝑉 and 𝜑𝜑𝜑𝜑∗:𝑊𝑊 → 𝑊𝑊, and then use these 
to get a nice decomposition of 𝜑𝜑 called Singular Value Decomposition (SVD).

• This implies 𝜑𝜑 𝜑𝜑∗ 𝜑𝜑 𝑣𝑣 = 𝜆𝜆𝜑𝜑 𝑣𝑣 . Note that 𝜑𝜑 𝑣𝑣 can’t be 0 (by ↑), so 𝜑𝜑 𝑣𝑣 is an 
eigenvector of 𝜑𝜑𝜑𝜑∗ of eigenvalue 𝜆𝜆.  



Singular Value Decomposition preliminaries

Proof:

• If dim 𝑉𝑉𝜆𝜆 = 𝑘𝑘 then we have 𝑘𝑘 orthogonal eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 of 𝜑𝜑∗𝜑𝜑 with eigenvalue 𝜆𝜆.
So, 𝜑𝜑 𝑣𝑣1 , …𝜑𝜑(𝑣𝑣𝑘𝑘) are eigenvectors of 𝜑𝜑𝜑𝜑∗ with eigenvalue 𝜆𝜆.  In fact, they’re also orthogonal: 
𝜑𝜑 𝑣𝑣𝑖𝑖 ,𝜑𝜑 𝑣𝑣𝑗𝑗 = 𝜑𝜑∗𝜑𝜑 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 = 𝜆𝜆𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 = 0.  So, dim 𝑊𝑊𝜆𝜆 ≥ 𝑘𝑘. And vice versa.



Singular Value Decomposition preliminaries

Using this, we now get…



Singular Value Decomposition

So, even though 𝜑𝜑 and 𝜑𝜑∗ don’t have eigenvectors (their domain and range are 
different – they are arbitrary linear transformations / matrices), the 𝑣𝑣𝑖𝑖 and 𝑤𝑤𝑖𝑖 are a bit 
like eigenvectors.  They are called the (right and left) singular vectors, and the 𝜎𝜎𝑖𝑖 are 
called singular values.



Singular Value Decomposition

Proof of (1):

• We already saw orthogonal.  Unit length because 𝜑𝜑 𝑣𝑣𝑖𝑖 ,𝜑𝜑 𝑣𝑣𝑖𝑖 = 𝜑𝜑∗𝜑𝜑 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝜎𝜎𝑖𝑖2.



Singular Value Decomposition

Proof of (2):

• 𝜑𝜑 𝑣𝑣𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑤𝑤𝑖𝑖 by definition.

• 𝜑𝜑∗ 𝑤𝑤𝑖𝑖 = 𝜑𝜑∗ 𝜑𝜑 𝑣𝑣𝑖𝑖 /𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑖𝑖2𝑣𝑣𝑖𝑖/𝜎𝜎𝑖𝑖= 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖.



Singular Value Decomposition

Matrix view: 𝐴𝐴𝑣𝑣𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑤𝑤𝑖𝑖 and 𝐴𝐴𝑇𝑇𝑤𝑤𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖. 

• If you view the rows of 𝐴𝐴 as representing 𝑚𝑚 points in 𝑛𝑛-dimensional space, then 
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 will be the “best-fitting” 𝑘𝑘-dimensional subspace in the sense of 
minimizing the sum of squared distances to the subspace. 

• Minimizing squared distance is equivalent to maximizing squared projection
• 𝐴𝐴𝑣𝑣 is the squared projection of points in 𝐴𝐴 along 𝑣𝑣

𝒂𝒂𝒊𝒊



Singular Value Decomposition

Matrix view: This is the rank-1 matrix 𝑤𝑤𝑣𝑣𝑇𝑇 (as opposed to the inner product 𝑤𝑤𝑇𝑇𝑣𝑣).

• Get 𝑤𝑤𝑣𝑣𝑇𝑇𝑢𝑢 = 𝑤𝑤 𝑣𝑣𝑇𝑇𝑢𝑢 .

Why is 𝑤𝑤𝑣𝑣𝑇𝑇 rank 1?

• Because all rows are multiples of 𝑣𝑣𝑇𝑇 (and all columns are multiples of 𝑤𝑤). 

We now get…



Singular Value Decomposition

𝐴𝐴 = �
𝑖𝑖=1

𝑟𝑟

𝜎𝜎𝑖𝑖 𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇

This is the Singular Value Decomposition of 𝜑𝜑 (or 𝐴𝐴).



Singular Value Decomposition

𝐴𝐴 = �
𝑖𝑖=1

𝑟𝑟

𝜎𝜎𝑖𝑖 𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇

Proof:

• First, note that the RHS is a linear transformation, so we just need to show it acts 
correctly on basis vectors.

• Let’s define a basis: take 𝑣𝑣1, … , 𝑣𝑣𝑟𝑟 and extend arbitrarily to orthonormal basis.

• What is RHS applied to 𝑣𝑣𝑗𝑗? Ans: 𝜎𝜎𝑗𝑗𝑤𝑤𝑗𝑗 = 𝜑𝜑(𝑣𝑣𝑗𝑗). 
• All the rest of the basis vectors are in the null-space. LHS and RHS both evaluate to 0. 



Singular Value Decomposition

• 𝜌𝜌:𝑉𝑉 → 𝑊𝑊 𝜌𝜌∗𝜌𝜌:𝑉𝑉 → 𝑉𝑉 𝜌𝜌𝜌𝜌∗:𝑊𝑊 → 𝑊𝑊

• 𝑣𝑣1, ⋯ , 𝑣𝑣𝑟𝑟 , 𝑣𝑣𝑟𝑟+1,⋯ , 𝑣𝑣𝑛𝑛
𝜎𝜎12 ≥ ⋯ ≥ 𝜎𝜎𝑟𝑟2 ≥ 0, ⋯ , 0

• For 𝑤𝑤1,⋯ ,𝑤𝑤𝑟𝑟 defined as 𝑤𝑤𝑖𝑖 ≔
𝜌𝜌(𝑣𝑣𝑖𝑖)
𝜎𝜎𝑖𝑖

• 𝜌𝜌 𝑣𝑣𝑖𝑖 = 𝜎𝜎𝑖𝑖 ⋅ 𝑤𝑤𝑖𝑖, 𝜌𝜌∗ 𝑤𝑤𝑖𝑖 = 𝜎𝜎𝑖𝑖 ⋅ 𝑣𝑣𝑖𝑖
• 𝑣𝑣1,⋯ , 𝑣𝑣𝑟𝑟 are orthonormal
• 𝑤𝑤1,⋯ ,𝑤𝑤𝑟𝑟 are orthonormal

𝜌𝜌 = �
𝑖𝑖=1

𝑟𝑟

𝜎𝜎𝑖𝑖 . | ⟩𝑤𝑤𝑖𝑖 ⟨𝑣𝑣𝑖𝑖|
18

Positive Semidefinite with same Non-zero Eigenvalues

Eigenvectors and Eigenvalues of 𝜌𝜌∗𝜌𝜌

𝜎𝜎𝑖𝑖s are singular values
Right singular vectors
Left singular vectors
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